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Abstraet--Steady natural convection in an enclosure heated from below and symmetrically cooled from 
the sides is studied numerically, using a streamfunction-vorticity formulation. The Allen discretization 
scheme is adopted and the discretized equations were solved in a line by line basis. The Rayleigh number 
based on the cavity height is varied from 103 to 10 7. Values of 0.7 and 7.0 for the Prandtl number are 
considered. The aspect ratio L/H (length to height of the enclosure) is varied from 1 to 9. Boundary 
conditions are uniform wall temperature and uniform heat flux. For the range of the parameters studied, 
a single cell is observed to represent the flow pattern. Numerical values of the Nusselt number as a function 
of the Rayleigh number are reported, and the Prandtl number is found to have little influence on the 

Nusselt number. A scale analysis is presented in order to better understand the phenomenon. 

IINTRODUCTION 

The phenomenon of natural convection in fluid-filled 
rectangular enclosures has received considerable 
attention in recent years. This attention is due mainly 
because this phenomenon often affects the thermal 
performance in many engineering applications. The 
present work was motivated by a more general analy- 
sis of  the heat transfer in electronic equipments. 

Natural convection in closed cavities has been studied 
primarily in fluid layers heated from below or fluid 
layers heated from the side. Rather  little work is car- 
ried out regarding more complex boundary conditions 
such as the case when the imposed gradient is neither 
horizontal nor vertical, specially for shallow or tall 
cavities. In a recent review on natural convection in 
cavities, Ostrach [l] observed that this configuration, 
which also occurs when the cavity is inclined, can be 
viewed as an excep~Lion among the works on this topic. 
Kimura  and Bejan [2] considered natural convection 
in a corner region formed by a vertical warm wall 
rising above a cold horizontal wall. Constant heat flux 
as well as uniform temperature boundary conditions 
were used. The problem was solved numerically and 
a scale analysis predicted the persistence of  a single 
cell. Small values of  Rayleigh number expansions indi- 
cated that the flow field in this case is relatively insen- 
sitive to the nature of  the boundary condition. And- 
erson and Laurial  [3] studied the flow in a cooled 
square cavity heated from below and cooled from one 
side. Except for a vertical adiabatic wall, the boundary 
conditions are the same as that of  the cavity in the 
present study. Numerical  calculations and exper- 
imental results confirm a single cell flow pattern and 
the absence of  Brnard-type instabilities, despite the 

unstable vertical temperature gradient adjacent to the 
heated floor. November  and Nansteel [4] studied the 
natural convection flow in a square enclosure with 
one cooled vertical wall and the cavity floor partially 
heated. They observed that the heated layer adjacent 
to the lower surface remains attached up to the turning 
corner though the density stratification in this layer is 
unstable. A question is left whether this layer would 
remain attached for larger aspect ratio enclosures. 

In this work a rectangular enclosure heated from 
below and symmetrically cooled from the sides is ana- 
lyzed. The boundary condition for the cavity floor is 
uniform temperature or uniform heat flux while the 
side walls are cooled at a uniform temperature. The 
basic governing equations are solved numerically for 
rectangular enclosures with the aspect ratio L/H 
ranging from 1 to 9. Parameters like the Nusselt num- 
ber and the maximum value of  the streamfunction are 
related to the Rayleigh number,  and the influence 
of  the Prandtl number verified. A scale analysis is 
performed in order to better understand the phenom- 
enon and consequently explain the correlations 
obtained from numerical results. 

MATHEMATICAL FORMULATION 

Consider a two-dimensional cavity of  height H and 
length 2L completely filled with a Newtonian fluid 
such as air or water shown in Fig. 1 along with the 
coordinate system employed. The cavity is sym- 
metrically cooled from the two vertical side walls kept 
at temperature to. The boundary condition at the cavity 
floor can be of  the first or second kind : uniform tem- 
perature th or  uniform positive heat flux q". Due to 
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g gravitational acceleration 
Gr Grashof number, Ra/Pr 
H cavity height 
k thermal conductivity 
l thermal penetration length 
L cavity half length 
Nu Nusselt number 
Pr Prandtl number, v/ct 
q" heat flux 
Q overall heat transfer rate 
Ra Rayleigh number, gflH3(th-  tc)/vct or 

yflHa q"/vctk 
t temperature 
th cavity floor average temperature 
At temperature difference, ( t h  I to) 

T dimensionless temperature, 
(t-- tc)/(th -- t~) or (t-- Q/(q"H/k)  

u horizontal velocity component 
U dimensionless horizontal velocity 

component, uH/ct 
v vertical velocity component 
V dimensionless vertical velocity 

component, vH/a 

NOMENCLATURE 

X 

X 

Y 
Y 

horizontal coordinate 
dimensionless horizontal coordinate, 
x/H 
vertical coordinate 
dimensionless vertical coordinate, 
y/H. 

Greek symbols 
CX 

6 
3 t 

V 

¢ 

~ t 

0 

thermal diffusivity 
coefficient of thermal expansion 
boundary layer thickness 
thermal boundary layer thickness 
kinematic viscosity 
vorticity 
dimensionless vorticity, ¢'/-F/:t 
generalized dimensionless variable 
(~ or T) 
stream function 
dimensionless streamfunction, ~k'/a. 

Subscripts 
c cold surface 
h hot surface. 

the symmetry of the problem only half of the enclosure 
has to be considered. Laminar and two-dimensional 
flow is assumed and the usual Boussinesq approxi- 
mation for the governing equations is adopted. It is 
convenient to deal with the equations and boundary 
conditions in dimensionless form. Selecting reference 
quantities for length, velocity and temperature, the 
following group of dimensionless variables can be 
defined as 

x y x = ~  r = - -  
H 

U t) 
U =  V =  (a/H) (a/H) 

t--to t--to 
T = - -  or T - - -  (1) 

th -- tc (q"H/k) 

Introducing the dimensionless streamfunction g~ 

T 
H 

I y 

t u ~g  
C 

t h or q" 
x ) 

K t. L. 
Fig. 1. Coordinate system of the cavity. 

tc 

v = ~ y  v = - o ~  (2) 

and the dimensionless vorticity 

dV OU 
= O X -  0~ (3) 

the conservation equations for mass, momentum and 
energy for steady state can be written in stream- 
function-vorticity form as 

~ r ~ U ~ +  V~y)  2 cat3T = V ~+Ra~T.  (4) 

0T c~T V2 
us2  + vS-f = T (5) 

V2ff = - ~  (6) 

where Pr and Ra are the Prandtl number and the 
Rayleigh number based on the enclosure height, 
respectively. 

The corresponding boundary conditions are 

ag, 
T = 0  ~ = ~ - - ~ = 0  a t X = 0  

OT 
~ = 0  0 = ~ = 0  a t X - - - L / H  

0T c~ 0 
T = I  or O - ~ = - I  O = ~ = 0  a t Y = 0  

or 0¢ ~-~=0 0 = ~ = 0  atY=l. (7) 
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It may be observed that in the boundary condition 
at Y = 0, for the case of uniform heat flux, the deriva- 
tive is negative because the heat flows towards the 
cavity. 

NUMERICAL PROCEDURE 

The numerical method adopted is based on the dis- 
cretization scheme proposed by Allen and Southwell 
[5]. Equations (4)--(6) are discretized and solved in a 
line-by-line basis for each step of the iterative process. 
The vorticity boundary value at the wall is calculated 
using a second-order form due to Jensen [6] and the 
Poisson equation (6) is discretized by the usual cen- 
tral-difference sclheme. An under-relaxation co- 
efficient of 0.7 for the vorticity transport equation is 
used in order to avoid divergence. The iterative 
process starts from an arbitrary vorticity field, the 
streamfunction is found from equation (6) and the 
velocity field and the vorticity at the walls are calcu- 
lated. The energy equation is solved and the vorticity 
discretized equation coefficients calculated with the 
corresponding residual being determined. This 
residual together with the ratio 

~,~j I ~b"+ 1 ~< 10 -5 (8) 

I,~,".,7' I 

where ~b is either T or 4, and n represents the iteration 
order, are used as a double checking for the con- 
vergence iterative process. If this criterion is not satis- 
fied the vorticity discretized equation is solved and 
the streamfunction is found, continuing the iterative 
process. 

The Nusselt number is calculated from the tem- 
perature field obtained at the end of the iterative 
process. For the case of uniform wall temperature at 
the cavity floor, the Nusselt number can be defined as 

Q 
Nu = ( 9 )  

k(th--tc) 

with 

Q = 30 \cx/x=o ffYY =odX' (10) 

When a uniforra heat flux is specified at the cavity 
floor, the Nusselt number is given by 

q"L 
Nu = - -  (11) 

k(th--tc) 

where Th is the average temperature at the cavity floor, 
expressed as 

7h = ~ t(x,O) dx. (12) 

The temperature derivatives are evaluated by using 
two interior points. The integrals are approximated 
by the trapezoidal, rule. 

Although the temperature discontinuity at the inter- 

section of the two walls at different temperatures has 
no influence on the numerical calculation of the 
interior temperatures and the flow field, it is necessary 
to make some considerations about this singular point 
in order to specify the conditions under which the 
values of the Nusselt number were evaluated for the 
case of uniform temperature at the cavity floor. As 
was well demonstrated by Nansteel et al. [7] the heat 
flux exhibits a non-integrable singularity at this point 
and consequently the overall heat transfer rate Q is 
unbounded. It follows that the numerical heat transfer 
results will be larger and larger as the grid is refined. 
One way to avoid this grid dependence is to introduce 
a well-defined temperature distribution for the tran- 
sition from the temperature of one wall to the tem- 
perature of the other in the region of the bottom left 
corner. This procedure introduces new parameters in 
the studied problem and, in an engineering appli- 
cation, it will depend on the configuration under 
study. 

Some authors adopted the simplest, but grid-depen- 
dent, procedure of assuming the average temperature 
of the two walls at the corner and keeping the adjacent 
nodes with the respective wall temperatures. Tests 
were performed to determine the grid dependence of 
the Nusselt number when this procedure is adopted 
for the studied problem. A linear temperature profile 
between the comer node and the next adjacent node 
was assumed. Figure 2 shows the results of these tests 
for Ra = 106, Pr = 7.0 and for Ra = 104, Pr = 0.7. 
The Nusselt number was evaluated along the x- and 
y-axes, according to equation (9). It may be seen that 
the grid dependence is more accentuated for Ra = 104 
than for Ra = 1 0  6. For Ra = 1 0  6 when the mesh is 
refined from 61 x 61 to 91 x 91 grid points the increase 
in the Nusselt number is less than 0.1% while for 
Ra = 104 and the same grid refinement the increase in 
the Nusselt number is 5.8%. For low values of the 

12.0 

11.0 

10.0 

9.0 

----- 8.0 (0 
o1 

7 ~ 7.0 

6.0 

5.0 
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3.0 
21 

Ra,,lO 8 
R 

fl a O 0 a 

,~ Nu along x-axis 
0 Nu along y - a x l s  

O 0 0 

Ra= 10 4 

0 0 0 

3'1 gl 5'1 6'1 7'1 e'l ¢1 
Grid points (x or y axis) 

Fig. 2. The effect of the number of grid nodes on the Nusselt 
number for L/H = 1 and specified temperature at the floor : 

Ra = 10 6, Pr = 7.0 and Ra = 104, Pr = 0.7. 
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Rayleigh number the isotherms are closer to the con- 
duction limit and the influence of  the corner point on 
the overall heat transfer rate is stronger. When the 
Rayleigh number increases this influence diminishes 
becoming important  only for very fine meshes. Other 
tests were carried out and confirmed this statement. 
The influence of  the grid refinement on the maximum 
value of  the streamfunction was also investigated and 
an increase from 61 x61 to 91 x91 nodal points 
resulted in a variation in the value of  qJmax of only 
0.6% for Ra = 106, Pr = 7.0. For  Ra = 104, Pr = 0.7 
practically no variation was observed for the same 
grid refinement. In view of  these results it was decided 
to use a uniform grid with 61 x 61 points for all cases 
where L / H  = 1 and the temperature at the intersection 
of  the two walls was assumed as the average tem- 
perature of  the two walls, keeping in mind the limi- 
tations of  this procedure and remembering that better 
assumptions about  this point depend on the specific 
engineering application under study. 

For  the shallow cavity, L / H  > 1, an irregular grid 
was adopted in the x-direction to refine the cavity 
extremes. The procedure consists of  transforming the 
independent variables so that in the transformed coor- 
dinate system the new domain can be covered by a 
grid uniformly spaced in both directions [8]. A new 
variable is defined for the transformed plane in the x- 
direction while in the y-direction the same 61 uniform 
grid points of  the square cavity are maintained. The 
hyperbolic sine was used for the variable trans- 
formation, because this function is easy to derive and 
it permits a localized refinement. 

Uniform and non-uniform grids were compared 
and as a general procedure, taking a uniform grid 
with AX = AY and 61 points in the y-direction as the 
reference, the utilization of  a non-uniform grid with 
about  one-third of  the number of  grid points in the x- 
direction produces approximately the same results as 
the former reference uniform grid with less computer  
time. For  example, for Ra = 1 0  6, L / H  = 7, Pr = 0.7 
and uniform temperature at the floor, the difference 
between the values of  the Nusselt number calculated 
for a uniform grid of  421 points in the x-direction and 
for a non-uniform grid of  151 points in the same 
direction is less than 0 . 7 0 ,  while the computing time 
is 10 times greater for the uniform grid. 

Non-uniform grids of  191, 151 and 111 points in 
the x-direction were adopted for L / H  = 9; 7 and 5, 
respectively. For  L / H  = 2 and 3 uniform grids with 61 
points in the y-direction and AX = A y were adopted. 

THE SQUARE CAVITY 

The square cavity is an important  starting point in 
the study of  the flow and heat transfer in enclosures. 
References with configurations closest to the present 
work deal with this type of  cavity [2-4]. 

The analysis is based on numerical results obtained 
for values of  the Rayleigh number in the range 103- 
l0 s and values of  the Prandtl number of  0.7 and 7.0. 

(a) 

J 

(b)  

iel 

(d) 
Fig. 3. Isotherms and streamlines for Pr = 7.0 and uniform 
temperature at the cavity floor. (a) Ra = 103, ~//max = 1.09; 
(b) Ra = 105, ~kma x = 19.16; (C) Ra = 10 6, ~max = 43.35; (d) 

Ra = 107, ~b .... = 75.96. 

Boundary conditions of  first and second kind are con- 
sidered at the cavity floor while the remaining 
boundaries are kept unalterated. Figure 3 illustrates 
the isotherms and the streamlines for uniform wall 
temperature at the cavity floor with Pr = 7.0. These 
contours were plotted for nine equally spaced values 
between zero and unity for T and between zero and 
Ugmax for the streamfunction (values indicated in the 
figure captions). Initially, when Ra = 104 [Fig. 3(a)], 
the isotherms are closer to the diagonally symmetric 
temperature distribution that corresponds to the limit 
of  pure conduction. As the value of  the Rayleigh num- 
ber increases, and consequently the circulation inside 
the cavity, the warmer fluid tends to occupy the upper 
right quadrant,  compressing the isotherms near the 
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cooled vertical wall and near the heated floor. This 
horizontal heated ]Layer remains attached to the cavity 
floor although the density stratification in this layer is 
unstable. 

For increasing values of the Rayleigh number the 
temperature tends to be more uniform in the upper 
right region of the cavity, with higher temperature 
gradients near the heated cooled wall, thus suggesting 
the development of thermal boundary layers at these 
walls. 

A scale analysis similar to that usually conducted 
for a natural convection boundary layer on a vertical 
wall exposed to an infinite medium [9] was applied to 
this study. Provided that the cavity in not tall, that is 
H ~< L, it may be assumed that a thermal boundary 
layer exists throughout the height H of the cavity 
cooled wall. For fluids having values of the Prandtl 
number of order one or greater it can be shown that 
the vertical thermal boundary layer thickness 6, and 
the vertical velocity scale v are 

6 t ~ H R a  -I/4 (13) 

v ~- (ct/H)Ra ]/2 (14) 

The maximum value of the streamfunction u?~ x is 
of the order of v6, where 6 is the hydrodynamic 
boundary layer thickness near the cooled vertical wall. 
For the case of Pr >~ 1 fluids 6 ~ 6 t Pr 1/2 : therefore 

~ / m a x  ~'~ Prl/2 Rail4 (15) 

Given the order of magnitude of the cooled wall 
heat flow rate as Q ~ kH(At/6t) ,  the order of the Nus- 
selt number can be expressed as 

Nu ~- k ~ t  ~ Rail4" (16) 

When the heat flux is specified at the cavity floor, 
the order of magnitude of the temperature difference 
must be determined. Since the total heat flow rate q"L 
entering the cavity floor of length L should match that 
exiting the cooled vertical wall of height H, it follows 
that At - (q ' f t / k ) (L /H) .  Thus, for uniform heat flux 
at the cavity floor, the scales are 

fit ~- H ( L / H ) - i / 5  Ra-~/5 (17) 

v ?:~ (~ /H) (L /H)  2/5 Ra 2/5 (18) 

~max ~ ~(L /H)  I/5 Prl/2 Ra 1/5 (19) 

Nu "~ (L /H)  1/5 Ra '/5 (20) 

and here the Rayleigh number is based on the heat 
flux. Observing that 6t << H, the constraints on the 
parametric domain in which the scaling results are 
valid can be determined. For uniform floor tem- 
perature 

Ra 1/4 >> 1 (21) 

and for uniform heat flux at the cavity floor 

(L /H)  '/5 Ra ]/5 >> 1. (22) 

10 2 

Z 
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N ' ~ u  ~ Ra ~4 

, , , , , , q  g , , , , , . !  , - i . , , , ,  , , , . n * l  , , ' , , , - I  ' 
102' 103 10 4 106 10 6 107 .... ~' 

Rayleigh 

(a) 

102: 

Z 

A Pr,,-0.7 

Pr=,7.0 

A 

Royleigh 

(b) 
Fig. 4. Nusselt number as a function of the Rayleigh number. 
(a) Uniform temperature at the cavity floor; (b) uniform 

heat flux at the floor. 

These relations represent the criterion necessary for 
the existence of a thermal boundary layer along the 
vertical wall. 

Numerical results were obtained in order to verify 
the validity of the predicted scaling laws. Figure 4 
shows values of the Nusselt number as a function 
of the Rayleigh number. When the temperature is 
specified at the cavity floor [Fig. 4(a)], the power 
law Nu -~ Ra 1/4 is observed more precisely only when 
Ra >~ 105, according to equation (21). For specified 
heat flux [Fig. 4(b)] the relation Nu ~ Ra ~/5 is satisfied 
in almost all the range 1 0  3 < Ra < 108. 

In both cases, for values of the Prandtl number of 
0.7 and 7.0, little influence of the Prandtl number 
on the Nusselt number is noticed. The power laws 
obtained from scale analysis were also observed for 
~/max and v, specially for Ra > 105, as suggested by 
criteria (21) and (22). 

The power laws presented here do not apply to 
the corner heated by the side and cooled from below 
studied by Kimura and Bejan [2]. In that case, the 
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vertical boundary layer does not extend along the 
whole height H of the heated wall, being restricted to 
the region near the cooled floor, where the tem- 
perature difference between the wall and the fluid is 
more pronounced. The stabilizing vertical tem- 
perature gradient, imposed by the cooled floor, causes 
a smaller circulation intensity inside the cavity and a 
smaller value of the Nusselt number as compared to 
the situation of the cavity analyzed in this work. The 
reduction of the circulation inside the cavity when a 
stabilizing vertical temperature gradient imposed was 
observed by Ostrach and Raghavan [10] for the classi- 
cal cavity heated in one side and cooled in the opposite 
side. 

THE SHALLOW CAVITY 

Uniform wall temperature at the cavity floor 
Cavity aspect ratios L/H = 2, 3, 5, 7 and 9 are 

considered here and results presented for Pr = 0.7 
only because the influence of the Prandtl number was 
found to have little influence on fundamental par- 
ameters like the Nusselt number and the maximum 
streamfunction value. 

Figure 5 shows isotherms and streamlines for 
L/H = 7 and Ra = 10 4, 10 5 and 10 6. It may be noticed 
that the flow consists of a single cell that rotates 
counterclockwise. This cell, when compared to the 
square cavity L/H = 1, does not occupy uniformly the 
whole cavity length, specially for smaller values of the 
Rayleigh number and higher L/H ratios. The presence 
of small recirculations in these cases will be discussed 
later in this study. As the Rayleigh number increases, 
the flow tends to occupy more uniformly the whole 
cavity, as the center of the cell moves steadily towards 
the cavity symmetry plane X = L/H. The isotherms, 
however, do not reach the cavity right side not even for 
Ra = 10 6. The velocity diminishes towards the cavity 
symmetry line (except for Ra = 10 6) and the cavity is 
approximately isothermal at this location. From this 
observation a thermal penetration length 1 can he 
defined, which represents the distance from X = 0 that 
is affected by the presence of the cooled wall. This 
penetration parameter has been used by Poulikakos 
[11] and Kimura and Bejan [12]. 

The thermal penetration length will be evaluated, 
for comparison purposes, as the distance between the 
cooled wall (X = 0) to the farthest point on the last 
isotherm drawn (T = 0.9). This consideration is valid 
when the last isotherm is not deformed by the prox- 
imity to the cavity symmetry plane. The thermal pen- 
etration as defined above is illustrated in Fig. 6(a) for 
Ra = 10 5 and L/H = 5, 7 and 9. It can be seen that 
the isotherm contours are no longer affected by the 
cavity length. The same happens to the streamlines, 
as shown in Fig. 6(b), except for a little distortion at 
the cavity symmetry for L/H = 5. The independence 
of the thermal penetration length respective to the 
cavity aspect ratio L/H suggests that this length 
should be a function of the Rayleigh number only. It 

is supposed that practically all the heat transfer from 
the cavity floor takes place along the region of the 
penetration length. The heat flow rate lost at the 
cooled vertical wall must balance the heat input 
through the floor. In scale analysis this results in 

kHAt/rt _~ klAt/H. (23) 

Substituting the value of the thermal boundary 
layer thickness 6t from equation (13) yields 

l ~- HRa 1/4. (24) 

This power law can be verified in Fig. 7 for Ra >1 10 4 

and L/H = 5, 7 and 9. Regardless of the ratio L/H, 
the results are almost coincidents for the same value 
of the Rayleigh number. When Ra = 103 the isotherms 
are less deformed in relation to the diagonally sym- 
metric limit of pure conduction, and the temperature 
gradients near the cooled vertical wall are relatively 
smooth. For this situation a boundary layer flow 
structure adjacent to the vertical wall is not well estab- 
lished and the penetration length does not obey the 
power law of equation (24). 

The influence of the cavity aspect ratio L/H on the 
Nusselt number is shown in Fig. 8, for Ra = 103-106. 
It can be seen that the effect of the ratio L/H on the 
Nusselt number increases with the Rayleigh number. 
For Ra = 103-104 the value of the Nusselt number 
varies very little with the ratio L/H. By observing the 
curve for Ra = 10 6, it may be noticed that the increase 
in the Nusselt number tends to stabilize for L/H > 5. 
For L/H <~ 5, the cavity is thermally active along its 
whole length L. When the cavity length is increased 
from L/H = 1 up to L/H = 5 the horizontal jet of 
cooled fluid is in contact with a larger dimension of 
the cavity floor, thus increasing the overall heat trans- 
fer rate to the fluid. For L/H = 7 and 9 the thermal 
penetration is incomplete and the region farther from 
the cooled wall is thermally inactive and does not 
contribute to the increase in the Nusselt number. It is 
worth mentioning that for L/H = 7 and 9 the values 
of the Nusselt number for the cavity approaches the 
value of the Nusselt number for an isothermal vertical 
wall in an infinite medium. The thermally inactive 
region, present in shallower cavities, acts approxi- 
mately as an isothermal fluid reservoir. 

The flow remains unicellular, independently of the 
ratio L/H and the Rayleigh number. Note that the 
heated layer adjacent to the cavity floor remains 
attached over the entire horizontal span of the en- 
closure, although the density stratification in this layer 
is unstable due to the fluid flowing vertically down- 
ward along the cold wall, as a consequence of the 
pressure gradient caused by the heated fluid that fills 
the upper part of the cavity and returns to the cooled 
wall. For L/H = 9 and Ra = 104 and 105, small recir- 
culations were observed near the cavity symmetry at 
X = L/H. These recirculations are of very low inten- 
sity, of the order of 1-2.5% of ~b . . . .  and occur in a 
region practically isothermal for lower values of the 
Rayleigh number and long horizontal cavities, being 
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(a) 

I 
(b) 

Fig. 5. Isotherms and streamlines for L/H = 7 and uniform wall temperature at the cavity floor for 
Ra = 104, 105 and 106. (a) Isotherms ; (b) streamlines (~bmax = 6.67, 16.46 and 39.49). 

caused by the viscous drag produced by the periphery 
flow of the main cell. Therefore they do not  consist of  
a convective effect due to an unstable vertical tem- 
perature gradient. 

Uniform heat flux at the cavity floor 
For  the case of a specified constant  heat flux at the 

cavity floor the presence of a heat flux along the entire 
floor length makes the cavity completely thermally 
active. 

Figure 9 shows the results for L/H= 7 and 
Ra = 103, 105 and 106. The flow pattem, as before, 

consists of a counterclockwise cell. However in this 
case the cell fills the cavity in all its extension. It  may 
be noticed that, for all cases, the center of the cell 
migrates from left to right when the Rayleigh number  
increases, a tendency also observed for uniform tem- 
perature though in a less pronounced way. For  the 
isotherms, the temperature gradient increases mono-  
tonically in the x-direction. This is more uniformly 
distributed along the cavity for Ra = 103 and 104, 
although it is always more intense near the cooled wall 
because it is in this wall that all the heat supplied 
along the cavity floor has to be removed. With the 
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(b) 
Fig. 6. Illustration of the thermal penetration length l for Ra = 105 and for L/H = 5, 7 and 9. (a) Isotherms ; 

(b) streamlines (~bmax = 16.48, 16.46 and 16.45). 
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Fig. 7. Thermal  penetration length vs Rayleigh number.  Fig. 8. Nusselt  number  as a function of  the aspect ratio L/H. 
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(a) 

(b) 
Fig. 9. Isotherms and streamlines for L/H = 7 and uniform heat flux at the cavity floor for Ra = ]0  3, ]0  5 

and 106. (a) Isotherms; (b) streamlines (~bma x = 3.46, 16.53 and 38.55). 

increase of the Rayleigh number,  and consequently 
the increase of the circulation, the heated fluid return- 
ing after changing its direction at the symmetry line 
tends to fill the upper part of the cavity enhancing the 
temperature grad:ient near the cooled wall, as can be 
noticed by the compression of the isotherms in this 
region. The pressure due to the flow, induced in the 
upper part by buoyancy and by the upward jet, com- 
presses the fluid that flows in the lower part of the 
cavity. This effecl: contributes to the stabilization of 
the fluid layer adj,,cent to the heated cavity floor where 
the vertical temperature gradient is unstable. 

The influence of the Rayleigh number  and of the 
ratio L / H  on the Nusselt number  is shown in Fig. 
10. The power law Nu ~ Ra ~/5 is better observed for 
Ra >~ l0 5, irrespective of the ratio L/H. As for the 
Nusselt number  as a function of  the aspect ratio L/H, 
when this ratio increases, the Nusselt number  
decreases for Ra = l0 3, is almost invariant  for 
Ra = 10 4 and increases for Ra > 10 4. This behavior 
can be understood by analyzing the Nusselt number  
in a limit situation when the Rayleigh number  tends 
to zero. The heat transfer in this case approaches that 
of  pure conduction limit, illustrated in Fig. 10(b) as a 
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value with the Rayleigh number was observed to be in 
good agreement with the power law given by equation 
(19) for Ra = 106-107. The variation with L/H was 
also in accordance with equation (19), specially for 
L/H >~ 5 and Ra > 104. These observations agree with 
what was suggested in equation (22) for the range of 
validity of the scale analysis for uniform heat flux at 
the cavity floor. 

Recirculations were not observed for shallow cavi- 
ties with uniform heat flux at the floor, because in this 
case isothermal regions are not present. The occur- 
rence of a clockwise secondary cell is prevented by the 
monotonically increasing temperature gradient along 
the x-axis. 

(a) 
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, , J i i 

10 
L/H 

(b) 
Fig. 10. The Nusselt number as a function of: (a) Rayleigh 

number, (b) aspect ratio. 

reference. When the Rayleigh number is small the 
isotherms fill the cavity in a relatively uniform way. 
Therefore the cavity length L can be taken as the 
characteristic dimension of the region where the tem- 
perature variation along the x-axis are taking place. 
Thus, the total heat flow rate across the cavity can be 
written as 

At 
Q ~- kH-~ (25) 

which results, using the definition of the Nusselt 
number, in 

Uu ~ (L/H)- '. (26) 

It may be noticed how the Nusselt number for pure 
conduction in Fig. 10(b) varies in a way very close to 
that predicted by equation (26). The Nusselt number 
variation with the ratio L/H falls gradually between 
the limits of the power laws given by equations (20) 
and (26). 

The variation of the maximum streamfunction 

CONCLUSIONS 

In this article, the phenomenon of natural con- 
vection heat transfer in rectangular enclosures heated 
from below and symmetrically cooled from the sides 
has been studied numerically for a range of values 
of the relevant parameters of the problem like the 
Rayleigh number and the aspect ratio L/H. The results 
showed a little influence of the Prandtl number on the 
heat transfer and on the flow circulation inside the 
cavity. 

For the square cavity L/H = 1 the boundary con- 
dition at the cavity floor, uniform surface temperature 
or uniform heat flux, does not strongly affect the flow 
or the isotherm contours. For a shallow cavity, 
however, there are markedly differences when the sur- 
face temperature or the heat flux is prescribed. In the 
case of uniform temperature at the cavity floor, the 
cavity is not always thermally active along its whole 
extension and the flow does not fill it uniformly in 
these cases. When the heat flux is prescribed, the iso- 
therms and the streamlines occupy more uniformly 
the whole cavity, even for low values of the Rayleigh 
number. 

The flow structure was found to consist of a single 
counterclockwise cell for all cases studied, except for 
a small secondary cell due to viscous drag observed in 
some cases for uniform temperature at the cavity floor. 

A scale analysis similar to that conducted for a 
natural convection boundary layer on a vertical wall 
exposed to an infinite medium predicted the basic flow 
features in the boundary layer regime. The heated 
cavity floor receives the cooled fluid and warms it, 
allowing the fluid to perform a cycle that approaches 
to what happens in a cooled vertical wall exposed to 
an infinite medium. 
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